Colorful Subhypergraphs in Kneser Hypergraphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colorful Subhypergraphs in Kneser Hypergraphs

Using a Zq-generalization of a theorem of Ky Fan, we extend to Kneser hypergraphs a theorem of Simonyi and Tardos that ensures the existence of multicolored complete bipartite graphs in any proper coloring of a Kneser graph. It allows to derive a lower bound for the local chromatic number of Kneser hypergraphs (using a natural definition of what can be the local chromatic number of a uniform hy...

متن کامل

Colorful Subhypergraphs in Uniform Hypergraphs

There are several topological results ensuring in any properly colored graph the existence of a colorful complete bipartite subgraph, whose order is bounded from below by some topological invariants of some topological spaces associated to the graph. Meunier [Electron. J. Combin., 2014] presented the first colorful type result for uniform hypergraphs. In this paper, we give some new generalizat...

متن کامل

Subhypergraphs in Non-uniform Random Hypergraphs

In this paper we focus on the problem of finding (small) subhypergraphs in a (large) hypergraph. We use this problem to illustrate that reducing hypergraph problems to graph problems by working with the 2-section is not always a reasonable approach. We begin by defining a generalization of the binomial random graph model to hypergraphs and formalizing several definitions of subhypergraph. The b...

متن کامل

Colorful subgraphs in Kneser-like graphs

Combining Ky Fan’s theorem with ideas of Greene and Matoušek we prove a generalization of Dol’nikov’s theorem. Using another variant of the Borsuk-Ulam theorem due to Bacon and Tucker, we also prove the presence of all possible completely multicolored t-vertex complete bipartite graphs in t-colored t-chromatic Kneser graphs and in several of their relatives. In particular, this implies a genera...

متن کامل

Kneser Colorings of Uniform Hypergraphs

For xed positive integers r, k and ` with ` < r, and an r-uniform hypergraph H, let κ(H, k, `) denote the number of k-colorings of the set of hyperedges of H for which any two hyperedges in the same color class intersect in at least ` vertices. Consider the function KC(n, r, k, `) = maxH∈Hn κ(H, k, `), where the maximum runs over the family Hn of all r-uniform hypergraphs on n vertices. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2014

ISSN: 1077-8926

DOI: 10.37236/3573